Deploying IPv6: 6NET and Euro6IX

Tim Chown tjc@ecs.soton.ac.uk NORDUnet 2002 Copenhagen, 16th April

Agenda

- Introduction
 - Why is IPv6 of interest?
 - IPv6 deployment status
 - Getting connectivity
- European projects
 - 6NET
 - Euro6IX
 - Others

IPv6 overview

- Successor to IPv4, with 128-bit addressing
 - e.g. 2001:0630:1fff:0080:dead:beef:baad:cafe
 - Improves scalability, client reachability
- Hierarchical addressing from outset
 e.g. single route advertised for JANET
- Auto configuration ("plug and ping")
 Well-suited to ad-hoc networking
- IPsec implementation "mandated"
- Better support for Mobile IP

Why university/HE interest?

- IPv6 is deploying elsewhere, esp. Asia
 - Gain understanding of deployment issues
- Deploy to support research activities
- Next generation application support
 - No NATs, restoration of end to end principle
 - IPv6 may be important for GRID activities
 - Potential for ADSL+802.11b+IPv6 to the home
 - Outreach, home working/learning
- 3G is set to use IPv6, and may be open...

Peer to Peer

- Current Internet has client-server focus
 - Web, e-mail, etc.
 - Clients in homes/SME's, servers on globally addressable Internet
 - NAT generally works in this environment
- Future trend client-client, or p2p
 - VoIP, messaging, file sharing, gaming, GRID, ...
 - Implies all devices globally addressable
 - Deployment of servers in the home
 - E.g. multiple web cams, home appliances/data
 - NAT adds significant complexity in this case

But do we really need it ...?

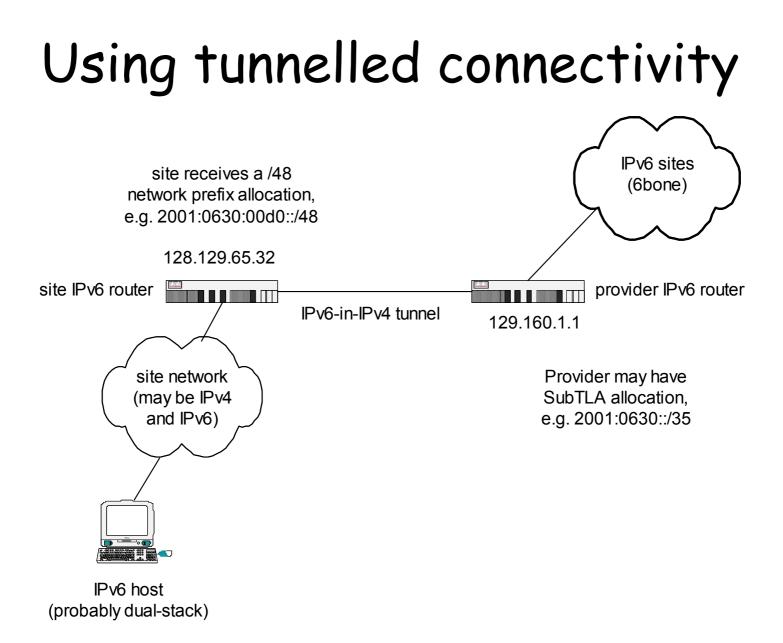
- IPv4 is seen to "do everything"
 - But it is being stretched
 - One of the biggest problems is NAT
 - Need to enable Internet growth
 - Provide a NGN development environment
 - Web evolved more than 10 years after IPv4
 - Seek to use IPv6 features
- Universities have address space
 - But many new PDA, embedded devices
 - GÉANT embracing eastern European countries

Introducing IPv6

- All we need to do is ...
 - Develop new stacks and (commercial) support for hosts (OS software and APIs) and routers (in hardware)
 - Check standards compliance and interoperability for and between IPv6 systems
 - Devise methods for IPv4 and IPv6 systems to co-exist and communicate with each other
 - Port and update everything needed for day-to-day use by end users, network operators, remote access,
- And then we might...
 - ...enable and evolve innovative new applications

Implementations

- Windows XP/.NET
- *BSD
- Linux
- Solaris 8+
- Symbian OS
- Compaq Tru64
- AIX 4.3+
- HP/UX 11.0+
- Irix

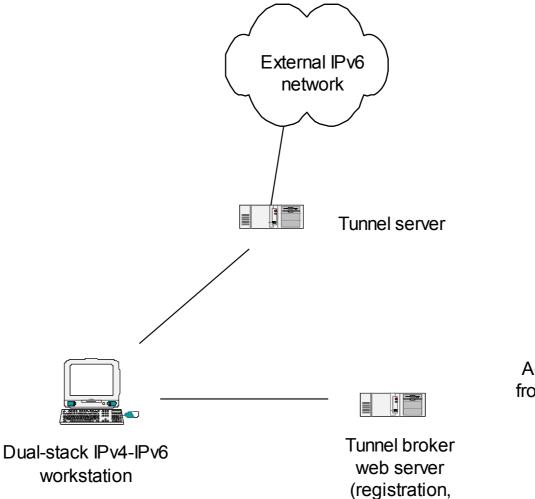

- Cisco IOS
- Juniper
- Hitachi
- *BSD
- Zebra, ZebOS
- Ericsson Telebit
- 6WIND
- 3Com
- +others...

IPv6 integration and transition

- How can IPv4 and IPv6 co-exist?
 - Includes IPv4 and IPv6 systems communicating
- Different transition aspects and tools
 - Site transition
 - ISP (MAN or NREN) transition
 - Need to understand relationships between tools
 - Wide range of proposed tools in IETF
 - IETF now identifying deployment scenarios
- How to deploy IPv6 in an IPv4 network
 - Includes DNS, firewalls, email,

End user+site IPv6 connectivity

- The basics for an end user/site...
 - Certainly a host that supports IPv6
 - And ideally a router supporting IPv6
 - Can run IPv6-only, but most likely dual stack
- An IPv6 connection to wider IPv6 Internet
 - Need an upstream provider
 - Link probably tunnelled in IPv4, possibly native
- IPv6 address space
 - Inherited from/allocated by upstream provider


IPv6 addressing and DNS

- Receive a /48 prefix from provider
 - Allows 16 bits of network space with 64 bits of host space, so better than IPv4 Class A prefix.
- Set up DNS for IPv6 addresses
 - Uses "quad A" records, e.g.
 - foo IN AAAA 2001:0630:00d0:20:<host part>
 - Can have A and AAAA for same host
 - Beware what the applications do here!
- Obtain reverse DNS delegation
 - Currently under ip6.int, soon ip6.arpa.

Tunnel brokers for single hosts

- Can connect with one single host using an IPv6 tunnel broker
 - Needs to be dual stack IPv4 and IPv6
 - Freenet6.net is world's most popular
 - But located in Canada!
 - Bypasses site admin, except for IP tunnel...
- Register at web page, receive script
 - Script creates the tunnel from your host to the tunnel server

script delivery)

Address space allocated from tunnel server provider address range

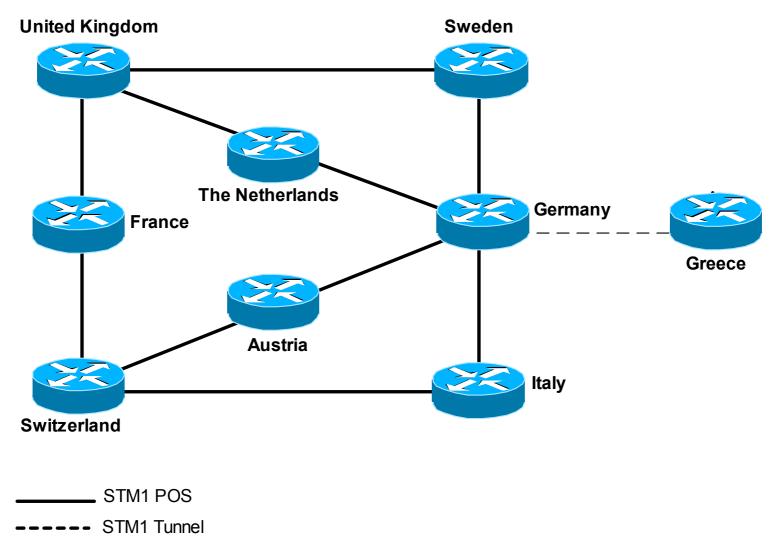
Current IPv6 deployment

- Generally tunnelled IPv6 in IPv4
 - Not structured
 - In many eyes, collaboration = tunnel + peering
 - Tunnel brokers often very remote
 - Lack of regional harmonisation
- Little experience of large-scale native IPv6 network deployment and operation
 - Hence 6NET and Euro6IX
 - IPv6 backed by European Commission
 - But important deployment is market led

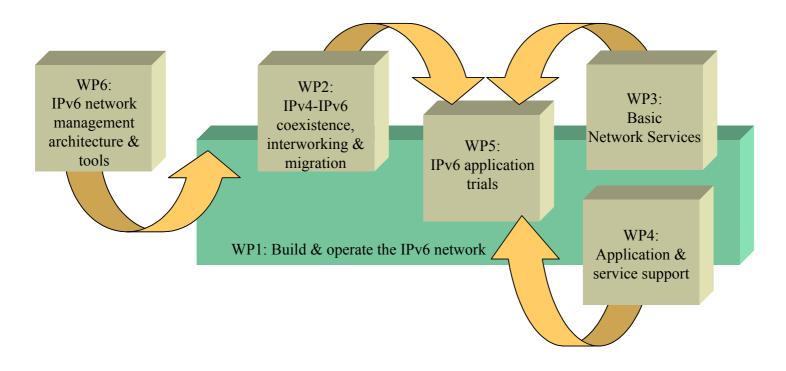
European academic deployment

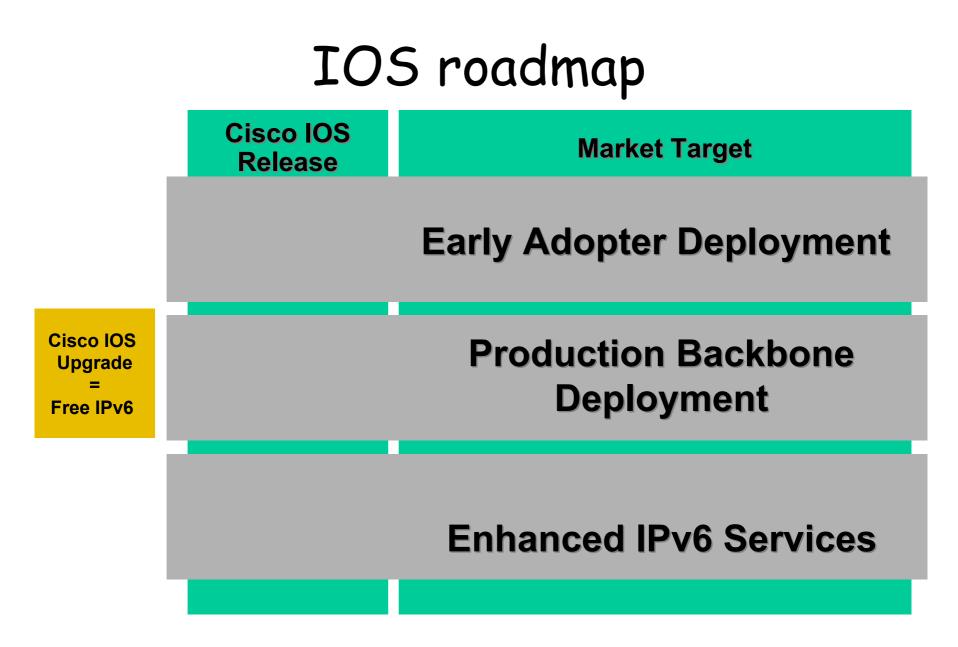
- National initiatives
 - e.g. UNINETT, RENATER, UKERNA
- European Commission funded projects
 - Early IST 5th framework
 - 6INIT, 6WINIT
 - Late IST 5th framework
 - · 6NET, Euro6IX, 6LINK
 - GÉANT pan-European deployment
 - Includes IPv6 activity towards production service in GÉANT lifetime

6NET and Euro6IX


- EC IST programme, 5th Framework
- Both projects 3 year duration
 - Both run Jan 1st 2002 Dec 31st 2004
- 6NET majors on academic networks
 - High capacity native network spans 11 NRENs
- Euro6IX focuses on telcos
 - Coming together at IPv6 exchange points, investigating new business models

6NET


- Major aim is to validate IPv6
- Led by Cisco, with 31 partners
 - 6NET PoPs are 12404-series routers
 - NREN PoPs are 12404 or 7206
- All major NRENs taking part
 Includes NORDUnet
- Universities providing end users
 - Network will be open to other projects
- Adding Poles, Czechs and Slovenians
 - Under newly associated states scheme


6NET network topology

6NET work packages

- WP1 specifies network
 - deployment due for April/May 2002.

Phase I

 Cisco IOS Release	IPv6 Features Supported
Phase I Early Adopters Cisco IOS 12.2(2)T, (4)T	IPv6 Basic specification (RFC 2460) ICMPv6, Neighbor Discovery Stateless auto-configuration RIPv6 (RFC 2080)
Any router able to run 12.2T, from Cisco 800 to Cisco 7500	Multi-Protocolt & news for BGP4 (F) 2 45 & 2058) Configure and Automatic Tunnels 6to4 Tunnel Standard Access List IPv6 over Ethernet (10/100/1000Mb/s), FDDI, Cisco HDLC, ATM and FR PVC, PPP (Serial, POS, ISDN) Ping, Traceroute, Telnet, TFTP
IP Plus, Enterprise and SP images	

Cisco IOS Upgrade = Free IPv6

Phase 2

Cisco	IOS
Relea	ISe

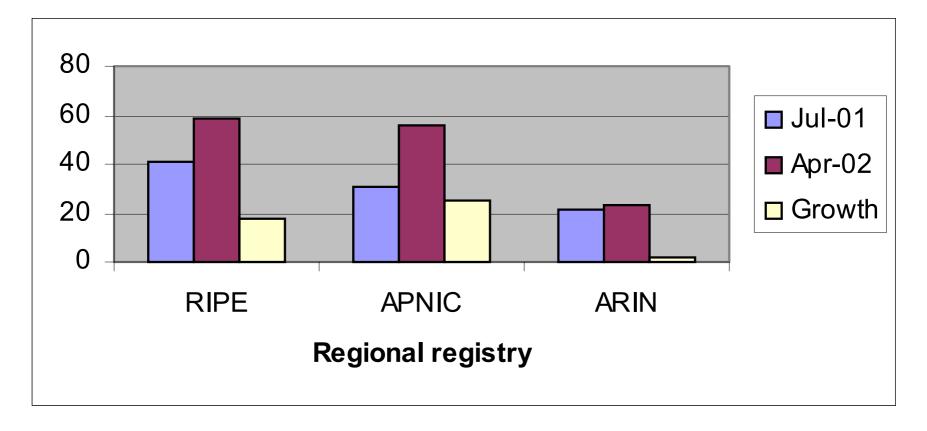
IPv6 Features Under Development

i/IS-ISv6 CEFv6/dCEFv6 AAA/Dialer Pool, NAT-PT Extended Access Control List IPv6 over IPv4 GRE Tunnels IPv6 Provider Edge router (6PE) over MPLS DNS AAAA client Link-Local BGP Peering CDP, SSH, IPv6 MIB Phase I Sustaining

Phase III

Cisco IOS Release	Evaluation of IPv6 Phase III Features
Phase III Enhanced Protocols	Routing: OSPFv3 & E-IGRP Enhanced Services: Mobile IPv6, IPSec, IPv6 Multicast, IPv6 QoS Management: Netflow IPv6 record, SNMP over IPv6, MIB's enhancements
Target date: CY 2002 And Later	Tunnels: IPv6 over IPv6, IPv4 over IPv6 tunnels, ISATAP IETF IPv6 Enhancements: eg. R.A. extensions, ICMPv6 prefix delegation, Hardware Acceleration: in-progress Encapsulation: Add enhanced support for DPT, Cable and DSL

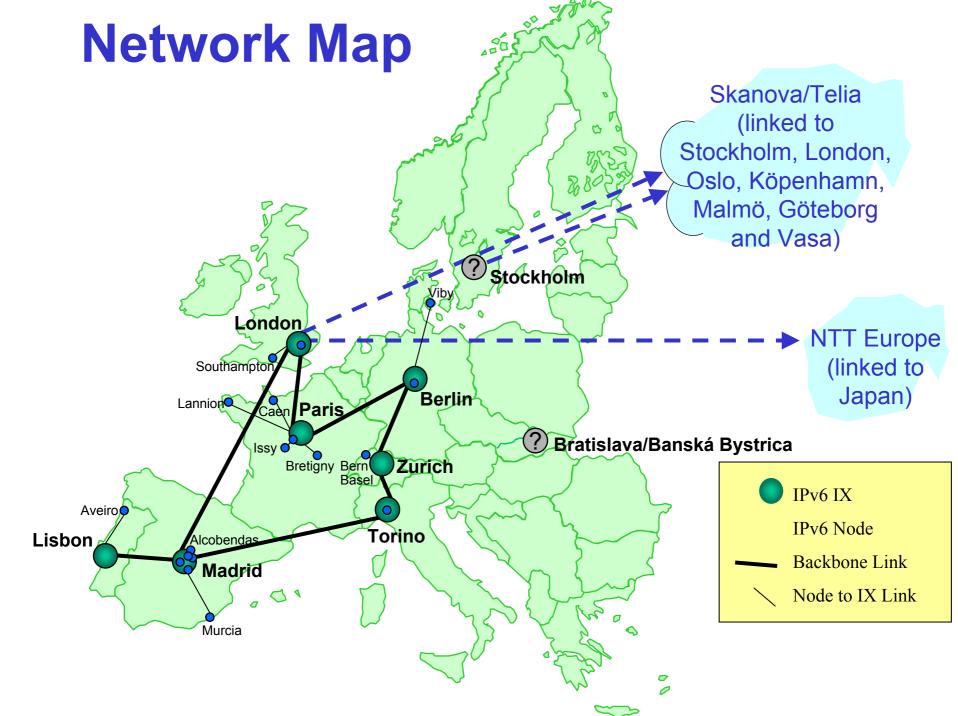
Technical aspects


- Routing
 - IS-IS internal, BGP4+ external
- Addressing
 - Core takes uses DANTE address space
 - · 2001:0798::/40
 - Point to point links use /64 prefix
 - NREN networks use own address space
 - RIPE NCC assigned production prefixes

RIPE-NCC SubTLA allocations

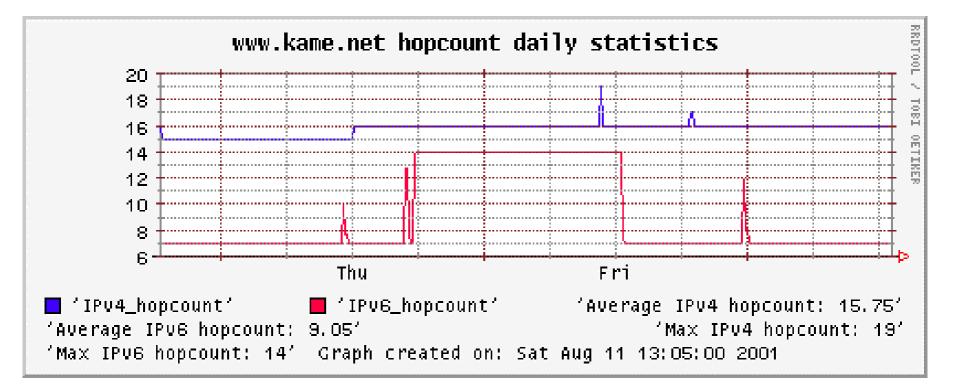
- Top level address space under 2001::/16
 - APNIC 56, ARIN 23, RIPE 59 as of April 2002
 - See http://www.ripe.net/cgi-bin/ipv6allocs
 - APNIC allocations growing the fastest
 - Common regional registry policies
- European NRENs with SubTLAs include:
 - CH-SWITCH-19990903
 - NO-UNINETT-20010406
 - AT-ACONET-19990920
 - UK-JANET-19991019
 - DE-DFN-19991102

2001:0620::/35 2001:0700::/35 2001:0628::/35 2001:0630::/35 2001:0638::/35

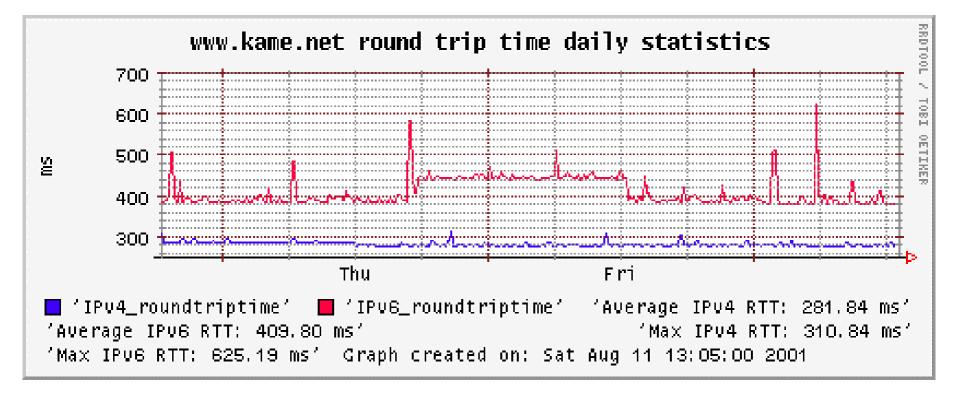

SubTLA allocation growth

Euro6IX

- Led by Telefonica/Consulintel
 - 18 partners, mainly telcos
 - Wide variety of router platforms
 - Hitachi is a primary sponsor
- Validating IPv6 for NGN
 - Investigating IPv6 business models
 - How telcos mutually benefit from IX's
 - Includes application development
 - Open to ISP's for trials


GÉANT IPv6 WG (GTPv6)

- GEANT committed to deploy IPv6
 - By end of project 2004
 - Backbone uses Juniper platform
- Variety of testbed routers
 - Centred around Juniper M5 at RENATER
 - Also Ericsson Telebit, FreeBSD, Cisco
 - Covers work items not in 6NET
 - Includes NREN partners not in 6NET
- See www.ipv6.ac.uk/gtpv6


IPv6 monitoring tools

- Desirable to monitor network
- Tools include
 - Basic ping and traceroute
 - IPv6 looking glass
 - BGP AS path viewers (ASpathTree)
 - Custom tools, e.g. trout6 developed in GTPv6
- 6NET is porting and deploying more tools
 - Includes RIPE Test Traffic servers
 - Part of full IPv6 NOC for 6NET

trout6: hop count

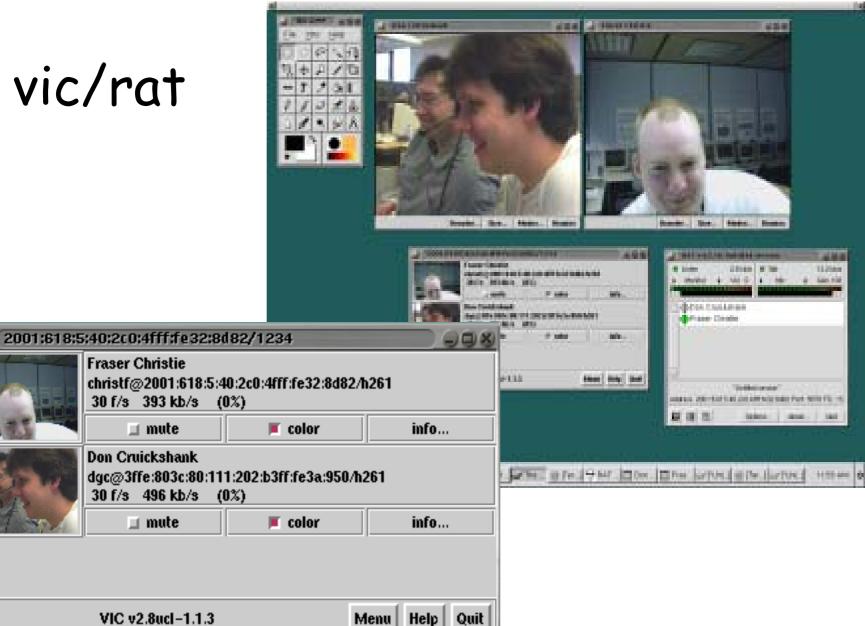
trout6: round trip time

6WINIT

- Focus on mobile, clinical applications
 - Uses IPv6 with GPRS/UMTS
 - Includes MIPv6, IPsec
 - Three clinical sites
- Also general non-clinical applications
 - Ad-hoc networking, service discovery
 - Sensor applications
 - Conferencing and collaboration
- See www.6winit.org

You want to run IPv6 only?

- Certainly possible
 - Many routers can run IPv6-only
 - But may need IPv4 if you want, e.g., SNMP.
 - Many hosts can run IPv6-only
 - But issues like DNS lookups over IPv6
- Need mechanisms to access IPv4-only sites
 e.g. NAT-PT or DSTM
- Want IPv4 sites to be able to reach you?


Combining dual-stack/IPv6 only

- Place public services on dual-stack servers
 e.g. web, DNS, FTP, e-mail
- Use IPv6-only for new applications
 - Aimed at allowing peer-to-peer between IPv6 clients: IPv6 enables the client-server paradigm to be replaced by peer-to-peer.
- Take care with firewalling
 - Don't let IPv6 testbed be a back door!
 - Put dual stack servers in your IPv4 DMZ

IPv6 applications

- Basic applications/services available
 - BIND9, sendmail, Apache, OpenLDAP
 - Most Linux/BSD commands enabled out of box
- Media applications include rat for videoconferencing ollaborative working suite
 - the GNDEGs 2+ 851 kgm in (PVBs)

vic/rat

Challenges...

- Numerous, including
 - Determining appropriate IPv4-IPv6 transition and interworking schemes
 - Delivering broadband access so home and SME services can benefit from IPv6
 - Attracting IPv6 end users, who probably will not know they are using IPv6
 - Delivering native IPv6 network services and applications

The near future

- IPv6 support hardening further
 - Hardware support in router platforms
 - OS support .NET, Symbian OS, Java
- IPv6 on NREN networks and GÉANT
 - By 2003/04 major benefit from 6NET
 - Will be dual stack (already on SURFnet)
- Application introduction still slow
 - May be accelerated, e.g. by 3G
 - Led by deployment in Japan and Asia region
 - IPv4 will be around for a long time

More info

- · 6NET
 - http://www.6net.org/
- · Euro6IX
 - http://www.euro6ix.org/
- 6LINK
 - http://www.6link.org/
- UK IPv6
 - http://www.ipv6.ac.uk/
 - http://www.ipv6.org.uk/